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Abstract

(1) Problem definition: We study sustainability of group lending under joint liability con-

tracts when borrowers are subject to strategic default. The benevolent lender optimizes the

borrower welfare while covers her costs of lending, and social ties between borrowers serve as

monitoring tools.

(2) Academic/Practical relevance: To the best of our knowledge, our work is the first the-

oretical study of this problem that models borrowers social network structures as patterns of

network monitoring.

(3) Methodology: The methodology employed in this paper is reverse game theory or mech-

anism design.

(4) Results: The results show that a higher average degree of centrality and connectivity in

the borrower network allows for more favorable contract terms (i.e., a higher loan ceiling and a

lower repayment amount). Accordingly, a borrower network with a complete structure qualifies

for the best contract terms. Intuitively, a complete network, which provides full monitoring, in-

duces the highest level of cooperation among borrowers and guarantees the highest level of group

performance (i.e. a higher chance of game continuation and a higher repayment rate). Further,

we argue that while for smaller groups, the highly decentralized ring networks (egalitarian) may
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have a higher performance than the highly centralized star networks (authoritarian), for larger

groups, star networks outperform the rings. We also prove that enlarging the group can lim-

itedly contribute to its performance and suggest an upper bound on the size of the borrower

group.

(5) Managerial implications: The setting studied in this paper can emerge in a variety of

team cooperation or social dilemma contexts that deal with monitoring, and thus the results

are valid wherever the interests of the individual and of the group are not aligned and agents

exert externalities on one another.

Keywords: Joint Liability, Strategic Default, Monitoring, Social Networks, Graph Theory

1 Introduction

Microfinance Institutions (MFIs) leverage borrowers’ social capital and local information to lend

to borrowers that are otherwise unbankable. This type of credit lending has long attracted the

attention of scholars, governments, and practitioners for its success in lending to the poor when

the conventional collateral and well-functioning formal institutions are missing. One of the most

studied and practiced lending models used by MFIs is lending to self-selected groups of borrowers

under joint liability contract.1 In a jointly liable group, if one member does not repay his loan, the

other members are held responsible to repay for him. The joint liability lending scheme is believed

to improve repayment rates in two ways: it incentivizes borrowers not only to help their group

members repay their installments but also to avoid delinquent behavior that may trigger social

sanctions (Besley and Coate, 1995). Microfinance literature argues that joint liability creates an

e↵ective way of screening, monitoring and enforcement of contracts (see e.g., Ghatak, 1999; and

Armendáriz and Morduch, 2010).

In this paper, we analyze the following microcredit lending game. A benevolent lender (she)

provides loans to a self-selected group of micro-entrepreneur borrowers with joint liability. Then

the loans are invested into projects that are disjoint and have an equal chance of success. Note that

the social network theory literature believes that people tend to homophilous, meaning that they

tend to have stronger ties with people who are similar to themselves (Borgatti and Halgin, 2011).

1
Recently, some of older MFIs have shifted from joint liability to individual lending. Nevertheless, group lending

with joint liability remains the main channel for microcredit lending by most MFIs. Moreover, MFIs moving away

from explicit joint liability have retained some of its traditions such as organizing borrowers into groups and holding

group meetings on a regular basis (Haldar and Stiglitz, 2016; and De Quit et al., 2018).
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Thus, it is not unrealistic to assume that the chance of project success for all members of a self-

selected group is equal. We also assume that borrowers can monitor each others’ project output at

least to some extent, but the lender cannot. This is also a reasonable assumption considering that

group members are self-selected and have better information about each other than the lender. The

entire group will be deprived from future loans if the total repayment obligation is not met. Such

a setting creates a risk-sharing arrangement that is subject to ex post moral hazard: a borrower

who is expected to repay may prefer not to.

We model the foregoing situation as a dynamic infinitely repeated game. Borrowers receive

individual contracts, specifying the amounts of loan L and repayment R. The contracts are equal

for all group members. Borrowers invest their loans on projects with disjoint return. All projects

have the same chance of success and yield either a high Y H or low Y L = 0 return. After the

realization of project outputs, each successful borrower decides to repay his loan or default while

unsuccessful borrowers are not supposed to repay. We discriminate between two types of default:

strategic default, in which borrowers are not willing to repay they have high project return, and

non-strategic default, in which borrowers do not repay because they have little or no project returns.

Members of the group can identify strategic default at least to some extent, but the lender cannot.

The lender delegates monitoring to group members by depriving the entire defaulting group from

future loans and thus decreases incentives for strategic default. We assume that, in the game played

between group members, they play a grim-trigger strategy. Meaning that, they stop repaying their

loans, as well as the loans of their defaulting peers, as soon as someone defaults strategically.2 In

such a case, no further loans are given to the group.

We model the borrower’s social network as a set of pre-existing relationships, such as friendships

or family ties, in which network links serve as a monitoring instrument ensuring that borrowers live

up to their responsibilities. We assume that borrowers with a strong social tie can fully monitor

the realized project output of each other while borrowers with a weak social tie can only partially

monitor each other’s project output. Having access to a higher level of monitoring allows a borrower

to reveal his truthfulness and verify the truthfulness of his peers and thus receive and give support

2
This is a plausible assumption as both real world experience and scientific evidence suggest that in social dilemma

situations, many people have a strong aversion against being the “gullible”. Fehr and Gächter (2000), for example,

argue that “those who cooperate may be willing to punish free-riding, even if this is costly for them and even if they

cannot expect future benefits from their punishment activities”. For another example, see Carpenter (2007).
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with a higher probability when needed. We also assume that indirect social ties, in which two

members are strongly connected through a third member, are more reliable than weak ties and less

reliable than strong ties. Such a setting allows us to investigate how variation in the structure of

borrowers social network (who is close friend of whom) relates to their collective levels of cooperation

and consequently to the lending outcome.

We derive the optimal joint liability contract depending on the structure of the borrowers’

social network and explore how network structure a↵ects both the chance of a successful group

repayment and the expected repayment of each individual borrower, which in turn a↵ect the joint

liability contract terms. We first look at networks of four borrowers (henceforth tetrads), which

are the smallest networks that allow for distinctive line, star, ring, core-periphery, and complete

structures to develop intuition, and then we show that the intuitions extend over networks of n � 5

borrowers (henceforth polyads). In practice, the size of the joint liability groups varies usually

between four and ten members (Ahlin, 2015).

While looking at larger networks of n borrowers, we focus on two specific structures: the highly

centralized star structure, in which a core borrower has strong links with all other group members

while the others are only indirectly connected to each other through the core borrower, and the

highly decentralized ring structure, in which every borrower has two strong links and two strong

indirect links with other group members. The reason for this focus, apart from simplifying the

analysis, is as follows. Many theoretical studies provide evidence for the formation of ring and star

structures (or convergence to these structures) as likely evolving structures in strategic settings.

For example, in their seminal work, Bala and Goyal (2000) theoretically prove that the ring and

the star structures are the only strict Nash equilibria of strategic network formation. Ring- and

star-like topologies have also received strong support from empirical and experimental studies (see

e.g., Falk and Kosfield, 2012; Goeree et al., 2009; Kumar et al., 2010; and Baker and Faulkner,

1993).

Our results show that a borrower network, in which all borrowers are connected through strong

social ties, may be the best network to induce cooperation among borrowers and thus improve

their welfare. Intuitively, borrower networks with full monitoring promote cooperation in two ways.

When a group members defaults, all other members can monitor his state of project and thus would

help him to repay his loan if he defaults non-strategically and would punish him if he defaults
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strategically. Although the best network structure that can induce cooperation is the complete

network structure, in the real world, borrowers networks can be less than complete, especially in

urban areas that people have less reliable information about their neighbors and friends. In such

situations, it makes sense to look at the e↵ect of di↵erent social network structures on the borrower’s

behavior and adjust the lending contracts accordingly.

The results also suggest that for tetrad borrower groups, higher the total degree of the network,

higher its performance with one exception: the star structure may have a higher performance than

the ring structure under some conditions. Moreover, removing a borrower of a lower degree from a

tetrad network can benefit the network only when projects are not too risky. For polyad borrower

groups, we extend this result and show that a higher average degree of centrality and connectivity

improves the performance of the network both in terms of a higher chance of game continuation and

a higher expected repayment (or robustness of the network). In other words, both the number and

the patterns of the strong links in a network can a↵ect the outcome of the lending game. Moreover,

connected networks, in which every member is fully monitored by at least one other member of

the group, have a higher performance than disconnected networks. Thus, any network with some

strong connections is better o↵ removing a borrower, which is poorly monitored by other group

members except when projects are highly risky.

We prove that in larger groups, the star structure can maintain a higher chance of game con-

tinuation and a higher expected repayment than the same-sized ring structure, while in smaller

groups, the ring structure dominates the star structure of the same size both in terms of a higher

chance of project success and a higher expected repayment. Intuitively, being a member of either

the highly centralized star structure or the highly decentralized ring structure has both benefits and

costs. In a star group, all members can monitor each other’s project outcomes at least indirectly,

and thus they are able to verify truthfulness of their defaulting members and maintain a higher

level of cooperation, but the group falls apart if the core member fails on his repayment. Although,

in a ring group, no member is overly important in terms of robustness, some members are out of

each other’s monitoring scope and cannot tell apart strategic defaults from non-strategic defaults.

In larger groups, the monitoring disadvantage of a ring structure with respect to a star structure

intensifies as every member is able to monitor at most four other members. However, in small

groups, the monitoring disadvantage of a ring structure fades away and its robustness advantage
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comes into play.

We further prove that a larger group size has two counteracting e↵ect on the borrower welfare.

On one hand, a large group can ceteris paribus provide a borrower with a higher chance of being

paid o↵ and continue receiving loan in the next round. On the other hand, a larger group can

put a successful borrower in charge of repaying for many other defaulting members. We find an

upper bound for the size of the group depending on the chance of project success and the borrower

discount factor.

2 Literature Review

This research is inspired by the line of research that examines how social ties can be used to contain

free-riding and induce cooperation in settings, in which formal contract enforcements are lacking,

such as: cooperations in organizations (Inkpen and Tsang, 2005), cooperations between immigrant

entrepreneurs (Kalnins and Chung, 2006), enforcement of informal contracts (Karlan et al., 2009),

reciprocity (Leider et al., 2009), repayment of online peer-to-peer (Lin et al., 2013) or other informal

loans (Canales and Greenberg, 2015).

Our paper contributes to the microfinance literature that views borrowers’ social ties as collateral

that can be used to circumvent moral hazard problem and encourage repayment (see e.g. Besley

and Coate, 1995; Zeller, 1998; Ghatak and Guinnane, 1999; Wydick, 1999; Hermes et al., 2005;

Cassar et al., 2007; Paal and Wiseman, 2011; Cason et al., 2012; Feigenberg et al., 2013). We

di↵er from this literature by explicitly modeling social ties as means of peer monitoring. In our

model, a stronger social tie between two borrowers allows them to better monitor each other’s

project outcome, which in turn induces cooperation because it provides a higher chance of both

being backed by peers in case of non-strategic default and being punished by peers in case of

strategic default. The extant microfinance literature provides evidence that stronger social ties

between group members can improve the repayment rate. For example, Besley and Coate (1995)

and Ghatak and Guinnane (1999) theoretically prove that high social ties deter group members

shirking on repayments. Moreover, Zeller (1998) and Cason et al. (2012) empirically show stronger

social ties lead to improved repayment rates and lender profitability if it exceeds monitoring costs.

Our research compliments this literature by discussing that apart from the prevalence and the
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strength of the social ties in a borrowing group, the existing patterns of these ties (who can monitor

whom) can also a↵ect the borrowers cooperative behavior and thus the lending outcome.3

Another literature that is closely relevant for this paper is the literature that highlights the

e↵ect of social network structures on team cooperation and team performance. Examples of these

researches include but are not limited to Rulke and Galaskiewicz (2000), Sparrowe et al., (2001),

Reagans and Zuckerman (2001), Collins and Clark (2003), Cummings and Cross (2003), Carson et

al. (2007), Gloor et al. (2008), and more recently Grund (2012). Rulke and Galaskiewicz (2000)

find that decentralization of knowledge in top management teams is positively associated with group

performance. Sparrowe et al., (2001) observed that social networks can a↵ect individual and group

performance both positively and negatively. The authors show that groups with decentralized com-

munication structures outperform groups with centralized communication structures. Reagans and

Zuckerman (2001) demonstrates that network density in corporate R&D teams is positively associ-

ated to network productivity. Collins and Clark (2003) show that social networks of top managers

in high-technology firms mediate the relationships between the human resource practices and firm

performance. In the context of leadership in a global organization, Cummings and Cross (2003)

indicate that core-periphery and hierarchical group communication structures were negatively re-

lated with group performance. Carson et al. (2007) found that shared leadership in consulting

teams predicts team performance. Gloor et al. (2008) provide evidence that balanced communica-

tion structures between online team members are positively related to team performance. Grund

(2012) empirically studies the interaction network and performance of professional soccer teams in

the English Premier League (EPL) and shows that networks with high intensity (controlling for

interaction opportunities) and low centralization have a better team performance.

A farther relevant literature for this paper is the literature on risk-sharing in social networks.

For prominent recent examples we could mention Bramoullé and Kranton (2007b), Attanasio et al.

(2012), Ambrus et al. (2014), Acemoglu et al. (2016), and Mobius and Rosenblat (2016).

3
A similar idea has been examined in the context of public good games by various researchers. For example, the

experimental works of Carpenter and Kariv (2012) prove that connected network with less than complete structure

can achieve a high level of cooperation; and Leibbrandt et al. (2015) find that the structure of the network significantly

a↵ects contributions and punishment decisions of its members.
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3 Model

The model in this section builds on our previous work Rezaei et al. (2017). Consider an infinitely

repeated lending game, with a benevolent lender and n borrowers. We assume that borrowers

with a strong social tie can fully monitor each other’s project returns while borrowers with a weak

social tie can only partially monitor each other’s project returns. Each period of the game has the

following three steps.

1. Each borrower receives an individual contract (L,R), specifying the amount of loan L, which

is enough to cover the costs of project, and the repayment R � L (1 + ✏) (primary loan plus

interest).

2. Each borrower invests the entire L in his project that will either succeed with a chance of

↵ 2 [0, 1] and yields a high return Y H > 0, which is increasing in the amount of loan L, or

not succeed with a chance of 1 � ↵ and yields a zero return. Group members can at least

partially monitor each other’s project returns, but the lender cannot.

3. Borrowers simultaneously make their repayment decisions. If i members default, the other

n � i members will be asked to collectively pay an additional amount iR to the lender for

their defaulting peers. If the total group repayment is equal to nR or more, the group receives

future financing; otherwise, the lender will exclude the entire group from future loans.

These three steps are repeatedly played until the lender realizes that the borrowers are not entitled

to financing next period. In periods in which no loan is received, borrowers’ utility will be zero.

We assume that projects do not di↵er in their riskiness (i.e., ↵ is the same for all borrowers) and

each borrower always invests in the same project.

Two types of defaults are possible: strategic default, in which the borrower does not repay

although he had high outcome Y H , and non-strategic default as a result of obtaining zero outcome

resulting from bad luck. Although, the lender is unable to monitor whether a borrower defaults

strategically or non-strategically, borrowers are at least partially able to monitor strategic defaults

of their peers.

We assume borrowers continue cooperating until someone defaults. If a borrower j defaults

strategically, borrowers play grim-trigger; that is, they stop paying for him. In this case, the group
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will not be eligible for further loans. If a borrower j defaults non-strategically, then a successful

strongly connected friend (a strong or a first-hand tie) of j, who is aware of j’s truthfulness, would

pay for him; and a successful weakly connected friend of j, who cannot verify j’s truthfulness, would

pay for him only with probability �. Whether a successful strongly connected friend of friend (an

indirect or a second-hand tie) of j would pay for him depends on the their friend in common; that

is, an indirect tie would pay for j if their friend in common pays; otherwise, he would pay for him

only with probability �.

The benevolent lender strives to maximize the payo↵ of each borrower contingent on the fol-

lowing criteria. First, each borrower must be willing to accept a loan (the repayment amount must

be a↵ordable); second, each successful borrower must have the incentive to repay for himself and

for each defaulting peer (in the worst case that all other members default, he must still be will-

ing to repay for the entire group); and third, the lender must break even, meaning that she must

maintain a sustainable lending operation over the entire loan portfolio by charging the appropriate

repayment amount.

Borrower Networks: Following the conventional social network theory literature, we employ a

graph theoretic language to describe borrower networks. A network N consists of a set of nodes,

J = {1, 2, ..., j � 2}, representing borrowers, and a set of edges, E , representing strong links between

borrowers. In such a network, if (i, k) 2 E , then borrowers i and k are strongly connected. If

(i, k) /2 E , but there is a borrower f such that (i, f) 2 E and (f, k) 2 E , then borrowers i and k

are indirectly connected. Borrowers i and k are said to be weakly connected if they are neither

strongly nor indirectly connected. We denote the number of borrowers in a group by |J | = j and

the total number of strong links between borrowers by |E| = e, which we also call the total degree

of the network. We also denote a network with j � 2 members and e strong links by N (j, e).

We assume that information achieved through indirect ties compared to the one through a direct

tie is of lower value. This is a reasonable assumption as indirect monitoring can cause information

to be distorted. We assume that the fidelity of the information diminishes as the length of the path

grows. Each arc diminishes the fidelity by a factor �. Accordingly, information transmitted over

two strong arcs has a weight of � < 1, and a path with k + 1 arcs has a weight of �k. Information

between two weakly connected nodes has a weight of � < �. For simplicity of our calculation, we
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assume that for any k � 2, �k < �.

In a network of n nodes, the degree of centrality of a node j is its sum of value of shortest paths

to all other nodes divided by n�1, and the average degree of centrality of a network is the average,

over all nodes, of their degrees of centrality. In our model, the shortest path between any two nodes

can be of length 1, �, or �. For example, in a ring tetrad network (i.e., a network of four nodes),

the degree of centrality of each node and the average degrees of centrality of the network are 2+�

3 .

For more examples, see Figures 3 and 4.

In a network of n nodes, the degree of connectivity of a node j is the sum of value of links that

the network loses if j is removed divided by n� 1, and the average of connectivity of a network is

the average of the degrees of connectivity of all nodes. For example, in a ring tetrad network, the

degree of connectivity of each node and the average degree of connectivity of the network are 2+2�
3 .

For more examples, see Figures 3 and 4.

A network of j � 2 members is said to have

• an empty structure when E = {} ,

• a star structure when E = {(1, j) , (2, j) , ..., (j � 1, j)} ,

• a ring structure when E = {(1, 2) , (2, 3) , ..., (j � 1, j) , (j, 1)} ,

• and a complete structure when E = {(1, 2) , (1, 3) , ..., (1, j) , (2, 3) , (2, 4) , ..., (2, j) , ... (j � 1, j)} .

4 Joint Liability Contract

In this section, we characterize feasible joint liability contracts and examine how contract terms

change in response to changes in the network structure. All group members receive the same

contract.

The expected utility of a repaying borrower j with a discount factor � in a period in which he

obtains financing is

vRj = ↵Y H � kjR+ �QvRj ,

where 0  Q  1 is the probability of receiving a loan in the next round, and kjR (0  kj  1) is
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the borrower’s expected repayment. The above equation can be rewritten as

vRj =
↵Y H � kjR

1� �Q
.

Accordingly, the total expected utility of the network in a period in which borrowers obtains

financing will be

V R =
nX

j=1

vRj =
n↵Y H �

P
n

j=1 kjR

1� �Q
.

The benevolent lender seeks to maximize V R and not her own profit, but she still needs to get

her money back to sustain lending overtime. Thus, the lender has to design the lending contract

such that the total expected repayment of the group covers at least the total loan granted to the

borrowers and the costs of lending services; that is,

nX

j=1

kjR � nL (1 + ✏) .

In other words, the average expected repayment in a network
P

n

j=1 kjR

n
should exceed a loan plus

the costs of services. In the rest of the paper, KR denotes the average expected repayment in a

network.

Moreover, the lender has to ensure that the total repayment is both a↵ordable and better than

default for a successful borrower; that is,

nR  Y H ,

Y H � nR+ �vR
j
� Y H .

Note that if the latter constraint holds for the member with the lowest vR
j

in the network, then it

holds for all members of the network. Since vR
j
is decreasing in kjR, it would be su�cient to satisfy

the constraint for the member with the highest kjR.
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Thus, the lender faces the following optimization problem,

maximize
L,R

V R =
n↵Y H � nKR

1� �Q
(1)

s.t. nR  Y H (2)

nR  �vRm (3)

KR � L (1 + ✏) , (4)

where vRm is the lifetime utility of the borrower with the highest expected repayment km in the

network. Proposition 1 solves the lender’s optimization problem and specifies the feasible contract

terms for a network of n members depending on the structure of the borrower network captured

by Q, K, km.

Proposition 1. Joint liability is feasible if and only if

L  L =

8
>>><

>>>:

KY
H

n(1+✏) if � � n

nQ+n↵�km

↵�KY
H

(n�n�Q+�km)(1+✏) if �  n

nQ+n↵�km

,

R =
L (1 + ✏)

K
.

The total expected lifetime utility for borrowers receiving the joint liability contract (L,R) will

amount to V R = n↵Y
H�nL(1+✏)
1��Q

.

Proposition 1 shows that the loan ceiling L , and consequently the total borrower welfare V R,

is increasing in both K and Q, but decreasing in km. Intuitively, a better connected network has a

higher chance of returning the loan and a higher total expected repayment and thus could be trusted

to receive a larger loan. However, if a larger portion of the expected repayment of the network

comes from one individual member, the default of that individual member would be di�cult to

handle for the rest of the network.

This proposition also highlights that the loan ceiling depends positively on the borrowers’ dis-

count factor, as ↵�KY
H

(n�n�Q+�km)(1+✏) is strictly increasing and KY
H

n(1+✏) is constant in �. Intuitively, if

borrowers value receiving future loans more, they would have a higher incentive to repay their loans

and thus could be trusted to repay larger loans. But there is a limit on the amount of loan they
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can be granted and the loan size cannot grow larger after some point.

The following examples provide some understanding about Q, K, and vRm. For an empty network

of n members, in which all members are weakly connected, there are
�
n

i

�
number of cases, in which

i members default on their repayments and n � i repay. Each successful member would repay for

the defaulting members with probability �i. Thus, for an empty network of n members, the chance

of a successful group repayment Qe will be

Qe =
n�1X

i=0

✓
n

i

◆
↵n�i (1� ↵)i

�
�i
�n�i

.

In an empty network of n members, every member j whose project succeeds is expected to repay

R for himself and i�R

n�i
on behalf of his defaulting peers. Thus, for an empty network of n members,

the average expected repayment KeR is

KeR =
1

n

nX

j=0

↵
n�1X

i=0

✓
n� 1

i

◆
↵n�1�i (1� ↵)i

✓
R+

i�R

n� i

◆

=
n�1X

i=0

✓
n� 1

i

◆
↵n�i (1� ↵)i

✓
1 +

i�

n� i

◆
R.

Note that the highest expected repayment in an empty network is the same as the average expected

repayment; i.e., kem = Ke, and thus

vRm =
↵Y H �KeR

1� �Qe
.

For the empty network, the expected repayment is the same for all group members, but this may

not be the case for other network structures. More precisely, depending on how many first-hand

and second-hand connections of a repaying borrower are among the i defaulting members, some of

the �’s will be replaced by � or 1.

For a complete network of n members, in which all borrowers are strongly connected, the chance

of game continuation Qc and the average expected repayment KcR of the network can be calculated
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by replacing � with 1 in the above formulas; that is,

Qc =
n�1X

i=0

✓
n

i

◆
↵n�i (1� ↵)i

= [1� (1� ↵)n] ,

KcR =
n�1X

i=0

✓
n� 1

i

◆
↵n�i (1� ↵)i

✓
1 +

i

n� i

◆
R

= [1� (1� ↵)n]R.

For such a network, kcm = Kc, and thus

vRm =
↵Y H �KcR

1� �Qc
.

The empty and the complete networks, respectively, set the lower and the upper bounds for the

chance of game continuation, the average expected repayment, and the highest expected repayment

for all networks with the same number of borrowers.

Clearly, the chance of game continuation Q and the average expected repayment K of the

network are increasing in the chance of project success ↵. We will discuss later that they are also

increasing in the average centrality and average connectivity of the network. Note that Q and K

may also change with the group size n, but such changes may not be monotonic because a new

node can be connected to the existing members in di↵erent ways.

4.1 Tetrad Networks

In this section, we explore how the structure of the network impacts Q and K. For gaining

insights, we begin with networks as small as tetrads. Although, tetrads might not fully represent

larger networks, they allow for various interesting network structures such as line, star, ring, core-

periphery, and complete structures (Figures 1).

Tables 1 and 2 summarize the chance of game continuation and the average expected repayment

for all possible tetrad network structures. Each row is devoted to a specific structure, and columns

represent the cases in which one, two, or three members default. In any tetrad, when no one

defaults, the chance of the game continuation is ↵4 and the average expected repayment is ↵4R. To

avoid repetition, these cases are not included in the Tables. Notations Qj,e and Kj,eR, respectively,
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(a) N (4, 0) (b) N (4, 1) (c) N1
(4, 2) (d) N2

(4, 2)

(e) N1
(4, 3) (f) N2

(4, 3) (g) N3
(4, 3)

(h) N1
(4, 4) (i) N2

(4, 4) (j) N (4, 5) (k) N (4, 6)

Figure 1: Possible tetrad network structures.

stand for the chance of game continuation and the average expected repayment for a network with

j members and e strong links. Superscripts are used when there are more than one networks with

j members and e strong links. The following orders can be verified in Tables 1 and 2.

First, every added link increases both the chance of game continuation and the average expected

repayment for tetrads; that is,

Q4,0 < Q4,1 < Q1
4,2, Q

2
4,2 < Q1

4,3, Q
2
4,3, Q

3
4,3 < Q1

4,4, Q
2
4,4 < Q4,5 < Q4,6,

K4,0 < K4,1 < K1
4,2,K

2
4,2 < K1

4,3,K
2
4,3,K

3
4,3 < K1

4,4,K
2
4,4 < K4,5 < K4,6.

Although, the total degree of the network can order the overall chance of game continuation and

average expected repayment for tetrads, for specific cases, such an order may not be true. For

example, for handling the case, in which one member defaults, the star structure (of total degree

three) perform better than the ring structure (of total degree four).

Second, among the three variations of N (4, 3), the star structure (Figure 1g), has the highest
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Table 1: The chance of game continuation when i = 1, 2, 3 members fails to repay.

i = 1 i = 2 i = 3

Q4,0 ↵3 (1� ↵)
�
4�3
�

↵2 (1� ↵)2
�
6�4
�

↵ (1� ↵)3
�
4�3
�

Q4,1 ↵3 (1� ↵)
�
2�3 + 2�2

�
↵2 (1� ↵)2

�
4�3 + 2�4

�
↵ (1� ↵)3

�
2�2 + 2�3

�

Q1
4,2 ↵3 (1� ↵)

�
4�2
�

↵2 (1� ↵)2
�
2�4 + 4�2

�
↵ (1� ↵)3

�
4�2
�

Q2
4,2 ↵3 (1� ↵)

�
�3 + 3�

�
↵2 (1� ↵)2

�
2�3 + 4�2

�
↵ (1� ↵)3

�
2�2 + � + �3

�

Q1
4,3 ↵3 (1� ↵)

�
�3 + 3�

�
↵2 (1� ↵)2

�
6�2
�

↵ (1� ↵)3
�
�3 + 3�

�

Q2
4,3 ↵3 (1� ↵) (2� + 2) ↵2 (1� ↵)2

�
3�2 + 2� + 1

�
↵ (1� ↵)3

�
2�2 + 2�

�

Q3
4,3 ↵3 (1� ↵) (4) ↵2 (1� ↵)2

�
3�2 + 3

�
↵ (1� ↵)3

�
1 + 3�2

�

Q1
4,4 ↵3 (1� ↵) (4) ↵2 (1� ↵)2

�
�2 + 2� + 3

�
↵ (1� ↵)3

�
�2 + 2� + 1

�

Q2
4,4 ↵3 (1� ↵) (4) ↵2 (1� ↵)2 (6) ↵ (1� ↵)3 (4�)

Q4,5 ↵3 (1� ↵) (4) ↵2 (1� ↵)2 (6) ↵ (1� ↵)3 (2 + 2�)

Q4,6 ↵3 (1� ↵) (4) ↵2 (1� ↵)2 (6) ↵ (1� ↵)3 (4)

Table 2: The expected repayment of a successful member when i = 1, 2, 3 of his co-members fail to
repay.

i = 1 i = 2 i = 3

K4,0R ↵3 (1� ↵)
⇣
3 + 6�

6

⌘
R ↵2 (1� ↵)2

⇣
3 + 12�

4

⌘
R ↵ (1� ↵)3

⇣
1 + 6�

2

⌘
R

K4,1R ↵3 (1� ↵)
⇣
3 + 1+5�

6

⌘
R ↵2 (1� ↵)2

⇣
3 + 2+10�

4

⌘
R ↵ (1� ↵)3

⇣
1 + 1+5�

2

⌘
R

K1
4,2R ↵3 (1� ↵)

⇣
3 + 2+4�

6

⌘
R ↵2 (1� ↵)2

⇣
3 + 4+8�

4

⌘
R ↵ (1� ↵)3

⇣
1 + 2+4�

2

⌘
R

K2
4,2R ↵3 (1� ↵)

⇣
3 + 3+3�

6

⌘
R ↵2 (1� ↵)2

⇣
3 + 5+7�

4

⌘
R ↵ (1� ↵)3

⇣
1 + 2+4�

2

⌘
R

K1
4,3R ↵3 (1� ↵)

⇣
3 + 3+3�

6

⌘
R ↵2 (1� ↵)2

⇣
3 + 6+6�

4

⌘
R ↵ (1� ↵)3

⇣
1 + 3+3�

2

⌘
R

K2
4,3R ↵3 (1� ↵)

⇣
3 + 5+�

6

⌘
R ↵2 (1� ↵)2

⇣
3 + 8+4�

4

⌘
R ↵ (1� ↵)3

⇣
1 + 3+3�

2

⌘
R

K3
4,3R ↵3 (1� ↵) 4R ↵2 (1� ↵)2

⇣
3 + 9+3�

4

⌘
R ↵ (1� ↵)3

⇣
1 + 3+3�

2

⌘
R

K1
4,4R ↵3 (1� ↵) 4R ↵2 (1� ↵)2

⇣
3 + 10+2�

4

⌘
R ↵ (1� ↵)3

⇣
1 + 4+2�

2

⌘
R

K2
4,4R ↵3 (1� ↵) 4R ↵2 (1� ↵)2 6R ↵ (1� ↵)3

⇣
1 + 4+2�

2

⌘
R

K4,5R ↵3 (1� ↵) 4R ↵2 (1� ↵)2 6R ↵ (1� ↵)3
⇣
1 + 5+�

2

⌘
R

K4,6R ↵3 (1� ↵) 4R ↵2 (1� ↵)2 6R ↵ (1� ↵)3 4R
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rank, the line structure (Figure 1f) has the second highest rank, and the structure that includes a

ring and an isolated node (Figure 1e) has the lowest rank in terms of the overall chance of game

continuation and average expected repayment; that is,

Q1
4,3 < Q2

4,3 < Q3
4,3, and K1

4,3 < K2
4,3 < K3

4,3.

In other words, the number of second hand connections can order both the overall chance of game

continuation and average expected repayment for N (4, 3) (a similar order holds for the two versions

of N (4, 2) and the two versions of N (4, 4)). However, such an order may not be true if we look

at some specific cases separately. For example, in case three members default, the structure with

an isolated node has a higher chance of game continuation than the line structure, while it has the

same average expected repayment as the line structure; and in case two members default, the line

structure perform better than the star structure in terms of a higher chance of game continuation,

but it has a lower average expected repayment.

Third, the ring tetrad (Figure 1i) has a higher overall chance of game continuation and average

expected repayment than the core-periphery tetrad (Figure 1h); that is,

Q1
4,4 < Q2

4,4, and K1
4,4 < K2

4,4.

The reason that the ring structure outperforms the core-periphery tetrad, although both graphs

have the same total degree and the same number of strong indirect connections, may be explained

by the fact that in the tetrad ring, any two nodes that are indirectly connected have two friends in

common. Therefore, if any two members default, the successful members of the group can verify

their truthfulness by direct or indirect monitoring and thus continue supporting them. But in

the tetrad core-periphery this feature is missing. For example, if borrowers 1 and 2 default, then

borrowers 3 and 4 cannot verify borrower 1’s truthfulness and may stop supporting him.

However, in extreme cases, in which one or three members defaults, the core-periphery structure

performs better than the ring structure because in such cases, the advantage of having more than

one friends in common does not come into practice. Note that for larger ring networks such a feature

may fade away, because we assume that friendship chains of a length longer than two are the same
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(a) N (3, 0) (b) N (3, 1) (c) N (3, 2) (d) N (3, 3)

Figure 2: Possible triad network structures.

as weak connections. Note that although, the ring structure o↵ers a higher over all chance of game

continuation and average expected repayment than the core-periphery structure, in specific cases,

in which one or three members default, the core-periphery structure dominates the ring structure in

terms of a higher chance of game continuation while having the same average expected repayment.

Can it benefit a tetrad group to ostracize a member? Depending on the structure, removing a

borrower from a tetrad network contracts it to one of the triad networks (i.e., a network of three

nodes) in Figure 2, for which the chance of game continuation and the average expected repayment

are summarized in Tables 3 and 4. Columns represent the cases, in which one or two members

default. In any triad, when no one defaults, the chance of the game continuation is ↵3 and the

average expected repayment is ↵3R. To avoid repetition, this case is omitted from the Tables.

Claim 1. For a tetrad network, the following statements hold.

1. Removing a borrower of degree zero or one can increase Q and K only if ↵ is not too small

and � is not too large. Removing a borrower of degree two or three almost always decreases both Q

and K.

2. Removing a borrower of degree zero increases Q for all tetrads and decreases K for all tetrads

except the empty network.

3. Removing a borrower of degree one can increase Q for tetrads with lower total degree and

can increase K for tetrads with a higher total degree.

4. Removing a borrower of degree two decreases both Q and K for all tetrads expect for the

core-periphery.

5. Removing a borrower from a symmetrical tetrad (in which all nodes have the same degree)

increases Q (except for the complete network) but decreases K.

Claim 1 suggests that removing a borrower can benefit the network when projects are not very
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Table 3: Columns show the chance of game continuation when i = 1, 2 members fails to repay.

i = 1 i = 2

Q3,0 ↵2 (1� ↵) 3�2 ↵ (1� ↵)2 3�2

Q3,1 ↵2 (1� ↵)
�
2� + �2

�
↵ (1� ↵)2

�
2� + �2

�

Q3,2 3↵2 (1� ↵) ↵ (1� ↵)2 (2� + 1)

Q3,3 3↵2 (1� ↵) 3↵ (1� ↵)2

Table 4: Columns show the average expected repayment when i = 1, 2 members fails to repay.

i = 1 i = 2

K3,0R ↵2 (1� ↵) (2 + �)R ↵ (1� ↵)2 (1 + 2�)R

K3,1R ↵2 (1� ↵)
⇣
2 + 1+2�

3

⌘
R ↵ (1� ↵)2

⇣
1 + 2+4�

3

⌘
R

K3,2R 3↵2 (1� ↵)R ↵ (1� ↵)2
⇣
1 + 4+2�

3

⌘
R

K3,3R 3↵2 (1� ↵)R 3↵ (1� ↵)2R

risky or borrowers are not highly supportive of their weak links. Moreover, the conditions, under

which removing a borrower can benefit the network is easier to satisfy for tetrad networks of a

higher total degree. For example, the condition necessary for removing a borrower with one strong

link is easier to satisfy for N (4, 4) than it was for N (4, 1).

Claim 1 implies that when handling risky projects, removing any borrower from a tetrad may

not be a good idea even removing the borrower with the lowest degree. According to the lemma

such exclusions may decrease the performance of the network both in terms of the chance of game

continuation and the average expected repayment.

4.2 Polyad Networks

In this section, we try to extend the results of previous section over polyad networks with n � 5

members. First, we look for ways we can order the chance of game continuation and the average

expected repayment. Lemma 1 suggests that both the number and the distribution of strong

connections a↵ect the chance of game continuation the average expected repayment of polyad

networks of size n.

Lemma 1. For any polyad network with n � 5 members, Q and K are increasing in the average

degree of centrality and the average degree of connectivity of the network.

Lemma 1 shows that a borrower can contribute to the performance of the network both by
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creating second-hand connections between borrowers that are not otherwise connected (captured

by the degree of centrality ce) and by building new second-hand connections between borrowers

that are already indirectly connected (captured by the degree of connectivity co). Proposition 2

employs the results of Lemma 1 to discuss when removing a borrower can improve the network

performance.

Proposition 2. Removing a borrower from a network may increase the chance of game continuation

and the average expected repayment for the remaining group members only if the degrees of centrality

and connectivity of the borrower relative to the average degrees of centrality and connectivity of the

network are small.

Proposition 2 implies that except when projects are highly risky, removing a borrower that has

no strong tie and thus is not monitored by anyone in the group improves the performance of any

network with some strong connections. In other words, connected networks, in which every member

is fully monitored by at least one other member of the group, should be preferred to disconnected

networks even at the cost of losing a member. According to this proposition, removing a highly

connected member can never benefit a network. Such a member works like a hub connecting other

group members and facilitating monitoring through out the network.

According to Proposition 2, removing an isolated node benefits di↵erent networks di↵erently

depending on how connected they are. For example, the isolated node from a pentad network

that includes a ring tetrad (Figures 3c) increases the chance of game continuation and the average

expected repayment for the remaining tetrad network more than removing the isolated node from

the pentad network, which includes a core-periphery tetrad (Figures 3b). In other words, the better

the network is connected, the more it benefits such a contraction.

Proposition 2 also implies that adding a member with a higher than average degree of centrality

and connectivity may improve the network performance, especially when projects are risky. How-

ever, enlarging the group should be done more carefully because adding a node to a network can

change its structure in di↵erent ways.

Proposition 2 can help us sort pentad networks with four links according to their performance

and compare them with tetrads. Structures including four connected nodes and an isolated node

(Figures 3b and 3c) have a higher overall performance than the one including two components
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(a)

(
ce =

2+3�
5

co =
2
5

(b)

(
ce =

2+�+2�
5

co =
2+�

5

(c)

(
ce =

2+�+2�
5

co =
2+2�

5

(d)

(
ce =

4+3�+3�
10

co =
4+3�
10

(e)

(
ce =

2+2�+�

5

co =
2+2�

5

(f)

(
ce =

2+3�
5

co =
2+3�

5

Figure 3: Pentad networks of total degree eight sorted with their average degree of centrality.

(Figure 3a) because the formers have a higher number of second-hand connections and thus a higher

average degrees of centrality. Similarly, network structures which include five connected nodes

(Figures 3d and 3e and 3f) have a higher overall performance than the ones with four connected

nodes and an isolated node (Figures 3b and 3c).

Moreover, among the two structures with four connected nodes (Figures 3b and 3c), the one

which includes a ring structure (Figure 3c) has a higher performance than the one which includes a

core-periphery (Figure 3b) despite both networks have the same average degree of centrality. The

reason for this is that the pentad including a tetrad ring provides some indirectly connected nodes

with more than one friend in common and thus has a higher degree of connectivity than the pentad

network including a tetrad core-periphery.

Further, similar to the case for tetrad networks, the star pentad (Figure 3f) has the highest

overall performance among the structures of the same total degree; but, unlike the case for the

tetrad networks, the ring pentad (Figure 4b) has a lower performance than all the core-periphery

structures of the same total degree (Figures 4c and 4d and 4e). Although, for pentads compared

to tetrads, the ring structure is less desirable, it still continues to outperform the star structure.

The above comparison between tetrads and pentads shows that the performance of some struc-
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10
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(b)

(
ce =

5+5�
10

co =
5+5�
10

(c)
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(d)
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ce =

5+4�+�

10

co =
5+4�
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(e)

(
ce =

5+5�
10

co =
5+5�
10

Figure 4: Pentad networks of total degree five sorted with their average degree of centrality.

tures may be a↵ected by the group size. Proposition 3 highlights this point for three specific network

structures.

Proposition 3. For polyad networks with n � 5 members, both the star and the ring structures

have a higher overall performance than the same-sized line structure; and a star structure has a

higher overall performance than the same-sized ring structure only if � > 2
n2�5n+2 .

Proposition 3 shows that, similar to the case for tetrads and pentads, the star structure polyad

has a higher overall performance than the line structure polyad. However, unlike the case for

tetrads and pentads, the star structure polyad can have a higher overall performance than the ring

structure polyad if the group is large enough and second-hand connections are valued highly by

borrowers. In other words, having many second-hand links may well compensates lacking a few

direct links if the second-hand connections are relatively well trusted by borrowers.

This proposition emphasizes that enlarging the group adds to the relative attraction of the star

structure while reduces the relative appeal for the ring structure, so that for a larger group size, the

star structure always has a higher overall performance than the ring structure. Intuitively, a star

network with n+1 members compared to a star network with n members has one extra strong link

and n� 1 extra indirect links; while a ring network of n+ 1 members compared to a ring network
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with n members has one extra strong link, one extra indirect link, and n extra weak links. Thus,

the star structure benefits from enlarging the group more than the ring structures do.

We recall from the previous section that some network structures, despite not having the highest

overall performance, may dominate the other structures for handling specific cases of project risk.

Can the line or the ring polyads proceed the star polyad for handling specific cases of project risk?

Proposition 4. For polyad networks of n � 5 fixed members, the following statements hold.

1. When one member defaults, a) both the ring and the star structures have a higher performance

than the line structure; b) the star structure can have a higher average expected repayment than the

ring structure if � � � and n are large enough and a higher chance of game continuation than the

ring structure always.

2. When n � 1 members default, a) the ring structure has a higher performance than the line

structure always; b) the star structure can have a higher performance than the line structure if �

is neither too large and nor too small; c) and the star structure can have a higher chance of game

continuation than the ring structure if � is small enough and n is large enough and a higher average

expected repayment always.

Considering that the number of failures in a group is related to the riskiness of projects, Propo-

sition 4 implies that in extreme cases, where projects are highly risky or only slightly risky, the

star structure may have an advantage over the line and the ring structures in terms of providing

a higher chance of game continuation and a higher average expected repayment, especially when

borrowers value their second-hand links notably higher than their weak links.

The intuition behind this result maybe explained as follows. In a borrower network of n mem-

bers, when one member defaults, the line network is likely to be partitioned into two subgroups,

which have only weak access to each other’s information, and the ring network will be reduced to

a line network, while the star network has a high chance of staying a star network. In other words,

with one member defaulting on his repayment, the star network is the only network that is likely to

keep its members’ links intact and thus keep the average expected repayment high. Such an e↵ect

is further magnified in larger groups.

When n� 1 borrowers fail to repay, the only successful member in a line network would be able

to verify the truthfulness of either one close friend if he is one the endpoints or two close friends

23



if he is a midpoint; while a successful borrower in a ring can always verify the truthfulness of two

close friends in a similar situation. Thus, the ring network has a slightly higher chance to fulfill

the mission than the line network when projects are risky. In such a situation, in a star network,

although it is likely that the only successful member is one of the peripheries, who is able to verify

the truthfulness of only one close friend, there is always a little chance that the successful node is

the core node, who would be able to verify the truthfulness of every body and repay the total group

loan. Note that in large groups, whether the only successful member can verify the truthfulness of

one or two members out of n� 1 defaulting members would not make a meaningful di↵erence.

4.3 Optimal Group Size

We recall from Proposition 1 that the relationship between the group size and the borrower welfare

depend on the structure of the network both before and after enlarging the group. In this section,

we consider expanding (and contracting) a group in a way that its structure stays intact, and

discuss how such expansions (and contractions) a↵ects the group performance and consequently

the borrower welfare.

In the previous section (Propositions 3 and 4), we discussed that for larger borrower groups,

star structures not only have a higher overall performance than ring and line structures of the same

size but also has a higher performance for handling extreme cases of project risk. Although, a larger

group improves the comparative status of the star structure with respect to the ring and the line

structures, it is not yet clear that whether enlarging these structures can improve their absolute

performance and the welfare of their borrowers.

It is rather intuitive that for star networks, the highest expected repayment ksm in the network

comes from the core borrower, thus clearly, ksm increases if the group grows larger, while for ring

and line networks the highest expected repayment (krm and klm respectively) in the network does

not change with the group size n. In order to check how enlarging the group a↵ects the chance

of game continuation Q and the average expected repayment K, we first formulate both of these

factors in the following lemma.
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Lemma 2. 1. For a star network of n � 5,

Qs = ↵n +
n�1X

i=1

↵n�i (1� ↵)i
✓

n� 1

i

◆�
1�i
�n�1�i

+

✓
n� 1

i� 1

◆�
1�i�1

�n�i

�
,

Ks =
n� 1

n

h
↵n + ↵ (1� ↵)n�1 (2 + (n� 2)�)

i

+
n� 1

n

n�2X

i=1

↵n�i (1� ↵)i
✓

n� 2

i

◆✓
1 +

i�

n� i

◆
+

✓
n� 2

i� 1

◆✓
1 +

1 + (i� 1)�

n� i

◆�

+
1

n

n�1X

i=0

↵n�i (1� ↵)i
✓
n� 1

i

◆✓
1 +

i

n� i

◆
.

2. For a ring network of size n � 5,

Qr = Qr0 +Qr1 +Qr2 + · · ·+Qrn�1 ,

Kr =
n�1X

i=0

min{2,i}X

j=max{i�2�(n�5),0}

min{2,(i�j)}X

k=max{i�j�(n�5),0}
✓

2

j

◆✓
2

k

◆✓
n� 5

i� j � k

◆
↵n�i (1� ↵)i

✓
1 +

j + k� + (i� j � k)�

n� i

◆�
,

where

Qr0 = ↵n

Qr1 = n↵n�1 (1� ↵)
�
12�2�n�5

�
,

...
...

...

Qrn�1 = n↵ (1� ↵)n�1 �12�2�n�5
�
,

and

P (hi) =

8
>>>>>><

>>>>>>:

1 hi = 0, 1

�2 hi = 2

�2�2hi�4 hi � 3

.
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3. For a line structure network of size n � 5,

Ql = Ql0 +Ql1 +Ql2 + · · ·+Qln�1 ,

K l =
2

n

n�1X

i=0

min{1,i}X

j=max{i�1�(n�3),0}

min{1,(i�j)}X

k=max{i�j�(n�3),0}
✓

1

j

◆✓
1

k

◆✓
n� 3

i� j � k

◆
↵n�i (1� ↵)i

✓
1 +

j + k� + (i� j � k)�

n� i

◆�

+
2

n

n�1X

i=0

min{2,i}X

j=max{i�1�(n�4),0}

min{1,(i�j)}X

k=max{i�j�(n�4),0}
✓

2

j

◆✓
1

k

◆✓
n� 4

i� j � k

◆
↵n�i (1� ↵)i

✓
1 +

j + k� + (i� j � k)�

n� i

◆�

+
n� 4

n

n�1X

i=0

min{2,i}X

j=max{i�2�(n�5),0}

min{2,(i�j)}X

k=max{i�j�(n�5),0}
✓

2

j

◆✓
2

k

◆✓
n� 5

i� j � k

◆
↵n�i (1� ↵)i

✓
1 +

j + k� + (i� j � k)�

n� i

◆�
,

where

Ql0 = ↵n,

Ql1 = 2↵n�1 (1� ↵)
�
1��n�3

�
+ 2↵n�1 (1� ↵)

�
12��n�4

�
+ (n� 4)↵n�1 (1� ↵)

�
12�2�n�5

�
,

...
...

...

Qln�1 = 2↵ (1� ↵)n�1 �1��n�3
�
+ 2↵ (1� ↵)n�1 �12��n�4

�
+ (n� 4)↵ (1� ↵)n�1 �12�2�n�5

�
.

Using the formulas suggested by Lemma 2, Lemma 3 verifies whether the chance of game

continuation and the average expected repayment can grow larger in larger group with a star, line,

or ring structure.

Lemma 3. For star, ring, and line networks, the chance of game continuation is always decreasing

in n, but the average expected repayment can be increasing in n if ↵ is small.

Thus, enlarging a network with less than complete structure may not improve the chance of

game continuation and the average expected repayment unless when projects are risky.

Lemma 4 shows that a↵ecting the chance of game continuation, the average expected repayment,

and the highest expected repayment in the network is not the only way that enlarging the group
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size can influence the borrower welfare.

Lemma 4. For a borrower network, if
�
K � n@K

@n

�
Q +

⇣
n@Q

@n
� @km

@n

⌘
K + @K

@n
km > 0, the loan

ceiling L increases in the group size n for any

� 2

0

@ K � n@K

@n�
K � n@K

@n

�
Q+

⇣
n@Q

@n
� @km

@n

⌘
K +

�
@K

@n

�
km

,
n

nQ+ n↵� km

1

A ; (5)

the borrower welfare V R can increase in n only if the loan size L increases in n.

Lemma 4 proves that depending on the network structure, enlarging the group may allow an

increase in the loan ceiling for mid range borrower discount factors. Consequently, for such feasible

discount factors, increasing the loan ceiling improves the borrower welfare. However, Proposition

5 proves that for complete networks, increasing n or ↵ tightens the range of the feasible discount

factors, characterized by (5); and thus the group size cannot grow infinitely large, especially when

the chance of project success is high. This proposition also sets an upper bound on the group size

for structures other than complete structure, for which the network performance can be less often

improved by enlarging the group size.

Proposition 5. For a complete network, an ↵̄ exists such that for any ↵ < ↵̄, the borrower welfare

will be increasing in

n 2
h
2,min

nj
�̂�1 (�,↵)

k
,
j
�̃�1 (�,↵)

koi
, (6)

where �̂ (n,↵) = [1�(1�↵)n]+(1�↵)n ln(1�↵)n

[1�(1�↵)n]2
, and �̃ (n,↵) = 1

↵+n�1
n

[1�(1�↵)n]
.

Proposition 5 proves first that for a complete network of borrowers, depending on the riskiness

of projects, there is an optimal group size that maximizes the borrower welfare and then finds

the optimal group size. Intuitively, a larger group provides a borrower with a higher repayment

insurance in case he defaults on his repayment, but a larger group also demands a higher repayment

responsibility in case the borrower succeeds in his projects. Thus when projects are relatively safe

and the insurance e↵ect of a large group is less needed, enlarging a group cannot improve the

borrower welfare.
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Table 5: The Range of Feasible Group Sizes for Complete Networks for Some Given ↵

↵ < 0.08 ↵ < 0.26 ↵ < 0.41 ↵ < 0.47 ↵ < 0.56 ↵ < 0.71

n = 2 X X X X X X
n = 3 X X X X X
n = 4 X X X X
n = 5 X X X

... X ...
n = 10 X X

...
...

n = 50 X

Using the proof of Proposition 5, one could simply verify that for ↵̄ = 0.47 (i.e., for any

↵ < 0.47), the borrower welfare increases in n = 2, 3, 4, while for ↵̄ = 0.71, the only feasible group

size is n = 2. Table 5 provides more examples of this kind and shows that larger group sizes are

feasible for a smaller chance of project success. As shown in this table, if ↵ > 0.56, the only feasible

group size will be n = 2. Thus, according to Proposition 5, the borrower welfare can increase in

group size only if ↵ < 0.56 and the given � is such that �̂ (n,↵) < � < �̃ (n,↵).

5 Conclusion

This paper presents a study of how the structure of borrowers social network may a↵ect the outcome

of group lending under joint liability and what characteristics a potential optimal network structure

should have. Extant microfinance literature argues that borrowers social collateral may facilitate

cooperation and substitute contract enforcement (e.g., Besley and Coate, 1995). Aligned with this

literature, we provide evidence that stronger social connectedness can improve repayment rate.

We di↵er from this literature by explicitly modeling social ties as means of peer monitoring. In

our model, a borrower that is strongly connected to the network better monitors and is better

monitored, and thus has a higher chance of both being backed by peers in case of non-strategic

default and being punished by peers in case of strategic default.

We prove that the borrower welfare is maximized in a complete borrower network, in which

borrowers can fully monitor each other’s project output and are able to di↵erentiate strategic de-

faults from non-strategic defaults. The intuition behind this result is simple. With full monitoring,

borrowers pay for their non-strategic defaulting co-member and punish their strategic defaulting
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co-member, both of which improve cooperation. We also prove that a higher average degree of

centrality and connectivity in the borrower social network increases the chance of game continua-

tion and the average expected repayment, which in turn increases the borrower welfare. We argue

that in order to maintain a relatively high average degrees of centrality and connectivity, connected

groups should be preferred to disconnected ones.

We focus especially on the star and the ring structure networks, which represent highly authori-

tarian and highly egalitarian networks, respectively. We argue that if project risk is not excessively

high, the egalitarian ring structure may proceed the authoritarian star structure of the same size

both in terms of a higher chance of project success and a higher average expected repayment.

While for average project risk, the performance is higher in authoritarian networks compared to

the egalitarian networks, especially for larger groups.

The stylized model in this paper is limited in many ways and could be extended by loosening any

of our assumptions. An immediate extension of our work is considering a longer chain of friendships

and not only friends of friends. In such a case, we might end up with a combination of ring and

star networks as an optimal choice, as a star network itself is a core-periphery structure with a

single node as the core. One could also look at contracts that are not necessarily the same for all

group members. The contract could depend on the level of social capital each individual borrower

brings to the group (his degree of centrality in our case) instead of the collective social capital

of the group. Such an extension is also in line with the recent shift from explicit joint liability to

individual lending by some MFIs, which interestingly preserve some of the group lending traditions.

Another interesting extension of our research is to look at strategies less severe than grim-trigger.

The grim-trigger strategy in our setting assumes that borrowers punish free-riding in their own

cost. In the real world, it may well benefit the repaying borrowers to repay for their strategically

defaulting group members and proceed to the next round of the lending game.

The setting under study in this paper, apart from the microlending, can emerge in other social

dilemma contexts that deal with monitoring, where the interests of the individual and of the group

are not aligned and agents exert externalities on one another.
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Appendix

Proof of Proposition 1. Assuming that borrower j = m is the borrower with the highest

expected repayment in the network, the lender’s optimization problem can be written as

maximize
L,R

V R =
n↵Y H � nKR

1� �Q

s.t. R  Y H

n

R  �vRm
n

R � L (1 + ✏)

K
.

Since V R is decreasing in R, the lender sets the lowest R possible; that is, R = L(1+✏)
K

. Replacing

R into the objective function and constraints, we will have

maximize
L,R

V R =
n↵Y H � nL (1 + ✏)

1� �Q
(7)

s.t. L  KY H

n (1 + ✏)
⌘ L̃

�
K,Y H , n, ✏

�
(8)

L  ↵�KY H

(n� n�Q+ �km) (1 + ✏)
⌘ L̂

�
K,Q, Y H , n, ✏,↵, �

�
(9)

Constraints (8) or (9) determine the loan ceiling, that is, a feasible loan L must satisfy L 

min
n
L̃, L̂

o
. It is not di�cult to verify that L̃  L̂ if and only if

1

n
 ↵�

n� n�Q+ �km
,

or

� � n

nQ+ n↵� km
⌘ �̃ (K,Q, n,↵) .

Thus, L  L̃ if � � �̃, and (8) determines the loan ceiling; and L  L̂ if �  �̃, and (9) determines

the loan ceiling.2

Proof of Lemma 1. First, assume qj defines the chance of game continuation if borrower j

defaults; and kiR defines the expected repayment of borrower j when he repays. Then the chance
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of game continuation and the average expected repayment of the network can be written as follows.

Q = ↵n +

P
n

j=1 qj

n
,

KR =

P
n

j=1 kjR

n
.

Second, in our model, if borrower j defaults along with another i � 1 members of the group, a

successful strongly connected friend of j would pay R

n�i
for him, a successful strongly connected

friend of friend of j would pay �R

n�i
for him if the friend in common is repaying, and a successful

weakly connected friend of j would pay �R

n�i
for him, where � < � < 1. In turn, if one of the

connections of borrower j defaults along with other i� 1 members of the group, borrower j would

pay �R

n�i
for him if he is a strongly connected friend, would pay ��R

n�i
for him if he is a friend of friend

and if their friend in common is repaying, and would pay ��R

n�i
for him if he is a weakly connected

friend. Moreover, a friend of friend of borrower j can add to his chance of game continuation and

expected repayment only if the friend in common does not default on his repayment, thus such

connections would come into practice more often if they are backed by more than one friend in

common. Thus, a well-connected borrower is more likely to be supported by the network when

he defaults and is more likely to support defaulting peers when he repays. More precisely, the

larger the degrees of centrality and connectivity of a borrower j is, the larger qj and kj will be.

Consequently, the larger the average degrees of centrality and connectivity of a network is, the

larger Q and K will be. 2

Proof of Proposition 2. We know from Lemma 1 that apart from ↵, the average degrees of

centrality and connectivity of a network a↵ect its overall performance (captured by Q and K)

positively. Thus, if a node has a low degrees of centrality and connectivity (lower than the average

of the network), he receives little (lower than average) support from the successful group members

when he defaults and gives little (lower than average) support to the defaulting members when he

succeeds. In other words, his defaults decreases the average chance of game continuation of the

group while his success does not increase the average expected repayment. Therefore, the network

is better o↵ without such a member. 2

35



Proof of Proposition 3. For a polyad with a line structure, the degree of centrality of nodes 1

and n is 1+�+(n�3)�
n�1 and of nodes 2 and n�1 is 2+�+(n�4)�

n�1 and of other n�4 nodes is 2+2�+(n�5)�
n�1 .

For such a network, the degree of connectivity of nodes 1 and n is 1+�

n�1 and of the nodes 2 and n�1

is 2+�

n�1 and of the other n�4 nodes is 2+2�
n�1 . Thus, for a line polyad, the average degree of centrality

and the average degree of connectivity, respectively, will be

cel =
2
⇣
1+�+(n�3)�

n�1

⌘
+ 2

⇣
2+�+(n�4)�

n�1

⌘
+ (n� 4)

⇣
2+2�+(n�5)�

n�1

⌘

n

=
2 (n� 1) + 2 (n� 2)� +

�
n2 � 5n+ 6

�
�

n (n� 1)
,

col =
2
⇣
1+�

n�1

⌘
+ 2

⇣
2+�

n�1

⌘
+ (n� 4)

⇣
2+2�
n�1

⌘

n
2 (n� 1) + 2 (n� 2)�

n (n� 1)
.

For a polyad with a star structure, both the degree of centrality and the degree of connectivity

of each periphery node are 1+(n�2)�
n�1 and of the core node are n�1

n�1 . Thus, for a star polyad, the

average degree of centrality and the average degree of connectivity, respectively, will be

ces = cos =
(n� 1)

⇣
1+(n�2)�

n�1

⌘
+
⇣
n�1
n�1

⌘

n

=
2 + (n� 2)�

n
,

For a polyad with a ring structure, the degree of centrality of each node is 2+2�+(n�5)�
n�1 , which equals

the average degree of centrality of the network cer. For such a network, the degree of connectivity

of each node is 2+2�
n�1 , which again equals the average degree of connectivity of the network cor.

That is,

cer =
2 + 2� + (n� 5)�

n� 1
,

cor =
2 + 2�

n� 1
.
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Knowing all the degrees of centrality and connectivity, we verify that the star structure has a higher

overall performance than the line structure of the same size.

cel < ces ,
2 (n� 1) + 2 (n� 2)� +

�
n2 � 5n+ 6

�
�

n (n� 1)
<

2 + (n� 2)�

n

, � < �,

col < cos , 2 (n� 1) + 2 (n� 2)�

n (n� 1)
<

2 + (n� 2)�

n

, 1 < n,

both of which hold always.

The ring structure can have a higher overall performance than the same-sized star structure

only in smaller groups.

ces < cer , 2 + (n� 2)�

n
<

2 + 2� + (n� 5)�

n� 1

, � <

�
n2 � 5n

�
� + 2

n2 � 5n+ 2
,

cos < cor , 2 + (n� 2)�

n
<

2 + 2�

n� 1

, � <
2

n2 � 5n+ 2
,

both of which hold if � < 2
n2�5n+2 .

The ring structure has a higher overall performance than the same-sized line structure.

cel < cer ,
2 (n� 1) + 2 (n� 2)� +

�
n2 � 5n+ 6

�
�

n (n� 1)
<

2 + 2� + (n� 5)�

n� 1

, � <
1 + 2�

3
,

col < cor , 2 (n� 1) + 2 (n� 2)�

n (n� 1)
<

2 + 2�

n� 1

, 1 < n,

both of which hold always. 2

37



Proof of Proposition 4. When one member fails to repay, the chance of game continuation and

the expected repayment for the line, the star, and the ring networks, respectively, are

Ql

1 = 2↵n�1 (1� ↵)
�
1��n�3

�
+ 2↵n�1 (1� ↵)

�
12��n�4

�

+(n� 4)↵n�1 (1� ↵)
�
12�2�n�5

�
,

Qr

1 = n↵n�1 (1� ↵)
�
12�2�n�5

�
,

Qs

1 = (n� 1)↵n�1 (1� ↵)
�
1�n�2

�
+ ↵n�1 (1� ↵)

�
1n�1

�
,

and

K l

1 =
2

n
↵n�1 (1� ↵)

✓
1 +

1

n� 1
+ 1 +

�

n� 1
+ (n� 3) +

(n� 3)�

n� 1

◆

+
2

n
↵n�1 (1� ↵)

✓
2 +

2

n� 1
+ 1 +

�

n� 1
+ (n� 4) +

(n� 4)�

n� 1

◆

+
n� 4

n
↵n�1 (1� ↵)

✓
2 +

2

n� 1
+ 2 +

2�

n� 1
+ (n� 5) +

(n� 5)�

n� 1

◆
,

Kr

1 = ↵n�1 (1� ↵)

✓
2 +

2

n� 1
+ 2 +

2�

n� 1
+ (n� 5) +

(n� 5)�

n� 1

◆
,

Ks

1 =
n� 1

n
↵n�1 (1� ↵)

✓
(n� 2) +

(n� 2)�

n� 1
+ 1 +

1

n� 1

◆

+
1

n
↵n�1 (1� ↵) (1 + (n� 1) (1)) ,

or more simplified

K l

1 = ↵n�1 (1� ↵)

 
(n� 1) +

(2n� 2) + (2n� 4)� +
�
n2 � 5n+ 6

�
�

n (n� 1)

!
,

Kr

1 = ↵n�1 (1� ↵)

✓
(n� 1) +

2 + 2� + (n� 5)�

n� 1

◆
,
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✓
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◆
+

1

n

◆
.
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When one member fails to repay, the ring can have a higher performance than the line if and only

if

Ql

1 < Qr

1 , 2��n�3 + 2��n�4 + (n� 4)�2�n�5 < n�2�n�5

, �2 + � < 2�,

K l

1 < Kr

1 ,
(2n� 2) + (2n� 4)� +

�
n2 � 5n+ 6

�
�

n (n� 1)
<

2 + 2� + (n� 5)�

n� 1

, 6� < 4� + 2,

and the star has a higher performance than the line if and only if

Ql

1 < Qs

1 , 2��n�3 + 2��n�4 + (n� 4)�2�n�5 < (n� 1)�n�2 + 1

, 2
�
�n�3 + �n�4

�
� + (n� 4)�n�5�2 � (n� 1)�n�2 < 1,

K l

1 < Ks

1 ,
(2n� 2) + (2n� 4)� +

�
n2 � 5n+ 6

�
�

n (n� 1)
<

n� 1

n

✓
(n� 2)� + 1

n� 1

◆
+

1

n

, � < �,

all of which hold always.

When one member fails to repay, the star can have a higher performance than the ring if and

only if

Qr

1 < Qs

1 , n�2�n�5 < (n� 1)�n�2 + 1,

Kr

1 < Ks

1 , 2 + 2� + (n� 5)�

(n� 1)
<

n� 1

n

✓
1 + (n� 2)�

n� 1

◆
+

1

n

,
�
n2 � 5n+ 2

�
� �

�
n2 � 5n

�
� > 2

, 2� 2� <
�
n2 � 5n

�
(� � �) ,

in which Qr

1 < Qs

1 holds always, and Kr

1 < Ks

1 can hold only if � � � and n are large enough (note

that the restriction becomes easier to satisfy as n grows larger).

Accordingly, when n � 1 members fails to repay, the chance of a successful group repayment
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and the expected repayment for the line, the ring, and the star polyads, respectively, are

Ql

n�1 = 2↵ (1� ↵)n�1 �1�n�2
�
+ (n� 2)↵ (1� ↵)n�1 �12�n�3

�
,

Qr

n�1 = n↵ (1� ↵)n�1 �12�n�3
�
,

Qs

n�1 = (n� 1)↵n�1 (1� ↵)
�
1�n�2

�
+ ↵n�1 (1� ↵)

�
1n�1

�
,

and

K l

n�1 =
2

n
↵ (1� ↵)n�1 (1 + 1 + (n� 2)�) +

n� 2

n
↵ (1� ↵)n�1 (1 + 2 + (n� 3)�) ,

Kr

n�1 = ↵ (1� ↵)n�1 (1 + 2 + (n� 3)�) ,

Ks

n�1 =
n� 1

n
↵ (1� ↵)n�1 (1 + 1 + (n� 2)�) +

1

n
↵ (1� ↵)n�1 (1 + (n� 1)) .

When n� 1 members fail to repay, the ring has a higher performance than the line if and only if

Ql

n�1 < Qr

n�1 , 2�n�2 + (n� 2)�n�3 < n�n�3

, � < 1,

K l

n�1 < Kr

n�1 , 2

n
(2 + (n� 2)�) +

n� 2

n
(3 + (n� 3)�) < 3 + (n� 3)�

, � < 1,

both of which hold always; and the star has a higher performance than the line if and only if

Ql

n�1 < Qs

n�1 , 2�n�2 + (n� 2)�n�3 < (n� 1)�n�2 + 1

, (n� 2)�n�3 � (n� 3)�n�2 < 1,

K l

n�1 < Ks

n�1 , 2

n
(2 + (n� 2)�) +

n� 2

n
(3 + (n� 3)�) <

n� 1

n
(2 + (n� 2)�) +

1

n
(n)

, (n� 1) < 2 (n� 2) (n� 3)�,

in which Ql

n�1 < Qs

n�1 can hold if � is not too large and K l

n�1 < Ks

n�1 can hold if � is not too

small. Note that the restrictions are easy to satisfy and they become even easier to satisfy as n

grows larger.
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When n� 1 members fail, the star can have a higher performance than the ring if and only if

Qr

n�1 < Qs

n�1 , n�n�3 < (n� 1)�n�2 + 1,

Kr

n�1 < Ks

n�1 , 3 + (n� 3)� <
n� 1

n
(2 + (n� 2)�) +

1

n
(1 + (n� 1))

, 1 < �.

Clearly, Qr

n�1 < Qs

n�1 holds only if � is small enough or n is large enough (the restriction becomes

easier to satisfy as n grows larger); while Kr

n�1 < Ks

n�1 holds always. 2

Proof of Lemma 2. Part 1. In a star polyad, if a member fails to repay, the chance that his

peers pay for him depends on whether he is the core member or one of the n�1 periphery members.

Thus, the chance of game continuation for a star polyad can be written as follows.

Qs = ↵n +

✓
n� 1

1

◆
↵n�1 (1� ↵)

�
�1
�n�2

+ ↵n�1 (1� ↵) (1)n�1

+

✓
n� 1

2

◆
↵n�2 (1� ↵)2

�
�2
�n�3

+

✓
n� 1

1

◆
↵n�2 (1� ↵)2

�
�1
�n�2

...

+

✓
n� 1

n� 1

◆
↵1 (1� ↵)n�1 ��n�1

�0
+

✓
n� 1

n� 2

◆
↵1 (1� ↵)n�1 ��n�2

�1

= ↵n +
n�1X

i=1

↵n�i (1� ↵)i
✓

n� 1

i

◆�
�i
�n�1�i

+

✓
n� 1

i� 1

◆�
�i�1

�n�i

�
.

In a star network, the expected repayment varies between the core member and periphery members.

Thus, the average expected repayment can be written as

Ks =
n� 1

n
Ksp +

1

n
Ksc ,
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in whichKsp andKsc , respectively, are the expected repayment of each repaying periphery borrower

and the one of the repaying core borrower and are calculated as follows,

Ksp = ↵n + ↵n�1 (1� ↵)

✓
n� 2

1

◆✓
1 +

�

n� 1

◆
+

✓
n� 2

0

◆✓
1 +

1

n� 1

◆�

+↵n�2 (1� ↵)2
✓

n� 2

2

◆✓
1 +

2�

n� 2

◆
+

✓
n� 2

1

◆✓
1 +

1 + �

n� 2

◆�

...

+↵2 (1� ↵)n�2
✓

n� 2

n� 2

◆✓
1 +

(n� 2)�

2

◆
+

✓
n� 2

n� 3

◆✓
1 +

1 + (n� 3)�

2

◆�

+↵ (1� ↵)n�1 [1 + 1 + (n� 2)�]

= ↵n +
n�2X

i=1

↵n�i (1� ↵)i
✓

n� 2

i

◆✓
1 +

i�

n� i

◆
+

✓
n� 2

i� 1

◆✓
1 +

1 + (i� 1)�

n� i

◆�

+↵ (1� ↵)n�1 [2 + (n� 2)�] ;

and

Ksc = ↵n +

✓
n� 1

1

◆
↵n�1 (1� ↵)

✓
1 +

1

n� 1

◆
+ · · ·+

✓
n� 1

n� 1

◆
↵ (1� ↵)n�1 (1 + (n� 1))

=
n�1X

i=0

↵n�i (1� ↵)i
✓
n� 1

i

◆✓
1 +

i

n� i

◆
.

Part 2. For a ring polyad, the chance of game continuation can be written as

Qr = Qr0 +Qr1 +Qr2 + · · ·+Qrn�1 ,

in which Qri is the probability of a successful group repayment when i = 0, 1, ..., n � 1 members

fail to repay. In such a network, any member who fails to repay has at most two friends who pay

for him for sure, at most two friends of friends who pay for him with probability �, and the rest of

the group who pay for him with probability �.

When no one fails to repay, the probability of a successful group repayment is Qr0 = ↵n.

When only one member fails to repay, the probability of a successful group repayment will be

Qr1 = n↵n�1 (1� ↵)
�
12�2�n�5

�
.

When two members fail, the network will be divided into two sections that consist of h1 and
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h2 = n� 2�h1 repaying members. In such a case, each of the two sections repays with probability

P (hi) =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

1 hi = 0

1 hi = 1

�� hi = 2

��2� hi = 3

� (��)
�
�2
�
hi�4

(��)� hi � 4

,

or more simplified

P (hi) =

8
>>>>>><

>>>>>>:

1 hi = 0, 1

�2 hi = 2

�2�2hi�4 hi � 3

.

Note that if one of the h1 or h2 = n�2�h1 is zero, it means that two consecutive nodes have failed,

and the graph consists of only one repaying section. Thus, when two members fail, the probability

of a successful group repayment will be

Qr2 =
n�2X

h1=0

n↵n�2 (1� ↵)2 P (h1)P (n� 2� h1) .

When three members fail, the probability of a successful group repayment will be

Qr3 =
n�3X

h1=0

n�3�h1X

h2=0

n↵n�3 (1� ↵)3 P (h1)P (h2)P (n� 3� h1 � h2) ,

and so on for any 2 < i < n� 2.

When n � 2 members fail, the two successful members may be direct friends, indirect friends,

or just weakly connected, thus the probability of a successful group repayment will be

Qrn�2 = n↵2 (1� ↵)n�2 �1��n�4
�2

+ n↵2 (1� ↵)n�2 �12��n�5
�2

+

✓
n

2

◆
� 2n

�
↵2 (1� ↵)n�2 �12�2�n�6

�2
.
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When n� 1 members fail, the only successful member will pay with probability

Qrn�1 = n↵ (1� ↵)n�1 �12�2�n�5
�
.

In turn, the average expected repayment for a ring polyad equals the expected repayment of one

borrower, as borrowers are in symmetrical situations. When i members fail, a successful repaying

borrower can have at most j = 2 friends and k = 2 friends of friends among them, for whom he

pays j

n�i
and k�

n�i
. The rest of the (i� j � k) defaulting members are only weak connection of the

successful repaying borrower, for whom he pays (i�j�k)�
n�i

. Thus, the expected repayment of any

repaying borrower should sum up to

Kr =
X

i

X

j

X

k

✓
2

j

◆✓
2

k

◆✓
n� 5

i� j � k

◆
↵n�i (1� ↵)i

✓
1 +

j + k� + (i� j � k)�

n� i

◆
.

If 0  i  n � 5, a repaying borrower may have no friends or friends of friends, who failed, thus,

the expected repayment should be rewritten as

n�5X

i=0

min{2,i}X

j=0

min{2,(i�j)}X

k=0

✓
2

j

◆✓
2

k

◆✓
n� 5

i� j � k

◆
↵n�i (1� ↵)i

✓
1 +

j + k� + (i� j � k)�

n� i

◆
.

If i > n � 5, a repaying borrower has at least one friend or friend of friend, who failed, thus, the

expected repayment should be rewritten as

n�1X

i=n�5

2X

j=max{i�2�(n�5),0}

2X

k=max{i�j�(n�5),0}
✓

2

j

◆✓
2

k

◆✓
n� 5

i� j � k

◆
↵n�i (1� ↵)i

✓
1 +

j + k� + (i� j � k)�

n� i

◆�
.

Therefore, the expected repayment should be rewritten as

Kr =
n�1X

i=0

min{2,i}X

j=max{i�2�(n�5),0}

min{2,(i�j)}X

k=max{i�j�(n�5),0}
✓

2

j

◆✓
2

k

◆✓
n� 5

i� j � k

◆
↵n�i (1� ↵)i

✓
1 +

j + k� + (i� j � k)�

n� i

◆�
.

Part 3. First we should point out that a line network is similar to a ring network, in which the
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link between nodes 1 and n is dropped. Thus, for calculating Ql and K l, we could use the results

of the previous part.

For a line polyad, the chance of game continuation for a line polyad can be written as

Ql = Ql0 +Ql1 +Ql2 + · · ·+Qln�1 ,

in which Qli is the probability of a successful group repayment when i = 1, ..., n � 1 members fail

to repay. In such a network, any failing member has at least one and at most two close friends who

are willing to pay for him, and at least one and at most two friend of friend who pay for him with

probability �.

When no one fails to repay, the probability of a successful group repayment is Ql0 = ↵n.

When one member fails, the network will be divided into two sections (similar to the case,

in which two members fail in a ring) that consist of h1 and h2 = n � 1 � h1 repaying members,

respectively. In such a case, each of the two sections repays with probability

P (hi) =

8
>>>>>><

>>>>>>:

1 hi = 0, 1

�2 hi = 2

�2�2hi�4 hi � 3

.

If one of the h1 or h2 = n� 1� h1 is zero, then the failing member must be one of the nodes 1 or

n. In such a case, the graph consists of only one repaying section and we simply assume P (0) = 1.

If one member defaults, for example in a group of n = 5 borrowers, then (h1, h2) can become one

of the pairs (0, 4), (1, 3), (2, 2), (3, 1), or (4, 0). Therefore, for n = 5, when one member defaults,

the probability of a successful group repayment will be

↵4 (1� ↵)P (0)P (4) + ↵4 (1� ↵)P (1)P (3) + ↵4 (1� ↵)P (2)P (2)

+ ↵4 (1� ↵)P (3)P (1) + ↵4 (1� ↵)P (4)P (0) .

In general, for any n � 5, if one member fails, then (h1, h2) can become (0, n� 1), (1, n� 2),
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(2, n� 3), ..., (n� 1, 0). In such a case, the probability of a successful group repayment will be

Ql1 =
n�1X

h=0

↵n�1 (1� ↵)P (h1)P (n� 1� h1) .

Qli can be calculated for any 2  i  n� 2 in a similar way.

When i = n � 1 members fail, the only successful member can be one of the nodes 1 and n

or one the nodes 2 and n � 1 or could be among the other n � 4 nodes, thus, the probability of a

successful group repayment will be

Qln�1 = 2↵ (1� ↵)n�1 �1��n�3
�
+ 2↵ (1� ↵)n�1 �12��n�4

�

+(n� 4)↵ (1� ↵)n�1 �12�2�n�5
�
.

For a line polyad, the expected repayments of nodes 1 and n di↵er from the ones of the nodes 2

and n � 1 and di↵er from the ones of other nodes. Therefore, the average expected repayment of

the line network can be written as

K l =
2

n
K l1 +

2

n
K l2 +

n� 4

n
K l3 ,

in which K l1 , K l2 , and K l3 represent the expected repayments of nodes 1 and n, of nodes 2 and

n� 1, and of the other nodes, respectively. Below, we calculate K l1 , K l2 , and K l3 .

When i members fail and 2  i  n � 3, a successful repaying node 1 or n can have at most

one friend and one friend of friend among the failing members, and thus his expected repayment

should sum up to

n�3X

i=0

1X

j=0

1X

k=0

✓
1

j

◆✓
1

k

◆✓
n� 3

i� j � k

◆
↵n�i (1� ↵)i

✓
1 +

j + k� + (i� j � k)�

n� i

◆
.

If 0  i  2, then a repaying borrower may not have a friend or friend of friend, who failed.

Therefore, the expected repayment when 0  i  n� 3 should be rewritten as

n�3X

i=0

min{1,i}X

j=0

min{1,(i�j)}X

k=0

✓
1

j

◆✓
1

k

◆✓
n� 3

i� j � k

◆
↵n�i (1� ↵)i

✓
1 +

j + k� + (i� j � k)�

n� i

◆
.
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If i > n� 3, then a repaying borrower has at least one friend or friend of friend, who failed.

Therefore, if 0  i  n� 1 members default, the expected repayment of a repaying node 1 or n

should be rewritten as

K l1 =
n�1X

i=0

min{1,i}X

j=max{i�1�(n�3),0}

min{1,(i�j)}X

k=max{i�j�(n�3),0}
✓

1

j

◆✓
1

k

◆✓
n� 3

i� j � k

◆
↵n�i (1� ↵)i

✓
1 +

j + k� + (i� j � k)�

n� i

◆�
.

When i members fail, and 3  i  n � 4, a successful repaying node 2 or n � 1 can have at most

two friends and one friend of friend among them, and thus his expected repayment should sum up

to

n�4X

i=0

2X

j=0

1X

k=0

✓
2

j

◆✓
1

k

◆✓
n� 4

i� j � k

◆
↵n�i (1� ↵)i

✓
1 +

j + k� + (i� j � k)�

n� i

◆
.

If 0  i  2, then a repaying borrower 2 or n � 1 may not have a friend or friend of friend, who

fails. Therefore, the expected repayment when 0  i  n� 4 should be rewritten as

n�4X

i=0

min{2,i}X

j=0

min{1,(i�j)}X

k=0

✓
2

j

◆✓
1

k

◆✓
n� 4

i� j � k

◆
↵n�i (1� ↵)i

✓
1 +

j + k� + (i� j � k)�

n� i

◆
.

If i > n � 4, then a repaying borrower 2 or n � 1 has at least one friend or friend of friend, who

failed.

Thus, if 0  i  n � 1 members default, the expected repayment of a repaying borrower 2 or

n� 1 should be rewritten as

K l2 =
n�1X

i=0

min{2,i}X

j=max{i�1�(n�4),0}

min{1,(i�j)}X

k=max{i�j�(n�4),0}
✓

2

j

◆✓
1

k

◆✓
n� 4

i� j � k

◆
↵n�i (1� ↵)i

✓
1 +

j + k� + (i� j � k)�

n� i

◆�
.

The expected repayment of any node that is not one of the 1, 2, n�1, n can be calculated as follows.

When i members fail, and 4  i  n � 5, a successful repaying borrower can have at most two
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friends and two friends of friends among them, and thus his expected repayment should sum up to

n�5X

i=0

2X

j=0

2X

k=0

✓
2

j

◆✓
2

k

◆✓
n� 5

i� j � k

◆
↵n�i (1� ↵)i

✓
1 +

j + k� + (i� j � k)�

n� i

◆
.

If 0  i  3, then a repaying borrower may not have a friend or friend of friend, who fail. Therefore,

the expected repayment when 0  i  n� 5 should be rewritten as

n�5X

i=0

min{2,i}X

j=0

min{2,(i�j)}X

k=0

✓
2

j

◆✓
2

k

◆✓
n� 5

i� j � k

◆
↵n�i (1� ↵)i

✓
1 +

j + k� + (i� j � k)�

n� i

◆
.

If i > n� 5, then a repaying borrower has at least one friend or friend of friend, who failed. Thus,

the expected repayment of a repaying borrower 3, 4, ..., n� 2 if 0  i  n� 1 should be rewritten

as

K l3 =
n�1X

i=0

min{2,i}X

j=max{i�2�(n�5),0}

min{2,(i�j)}X

k=max{i�j�(n�5),0}
✓

2

j

◆✓
2

k

◆✓
n� 5

i� j � k

◆
↵n�i (1� ↵)i

✓
1 +

j + k� + (i� j � k)�

n� i

◆�
. 2

Proof of Lemma 3. 1. 1. For star networks, the chance of game continuation is always decreasing

in n, but the expected repayment can be increasing in n if ↵ is not too large.

Qs

n+1  Qs

n , ↵n+1 +
nX

i=1

↵n+1�i (1� ↵)i
✓

n

i

◆�
�i
�n�i

+

✓
n

i� 1

◆�
�i�1

�n+1�i

�

 ↵n +
n�1X

i=1

↵n�i (1� ↵)i
✓

n� 1

i

◆�
�i
�n�1�i

+

✓
n� 1

i� 1

◆�
�i�1

�n�i

�
,

that can be rewritten as

Qs

n+1  Qs

n ,
nX

i=1

↵n�i (1� ↵)i�1
✓

n

i

◆�
�i
�n�i

+

✓
n

i� 1

◆�
�i�1

�n+1�i

�

 ↵n�1 +
n�1X

i=1

↵n�i�1 (1� ↵)i�1
✓

n� 1

i

◆�
�i
�n�1�i

+

✓
n� 1

i� 1

◆�
�i�1

�n�i

�
.

48



If ↵ ! 1, for any i 6= 1, all the sentences of the left-hand side of the above inequality that include

(1� ↵)i equal to zero; that is, we will have

Qs

n+1  Qs

n ,
✓
n

1

◆
�n�1 +

✓
n

0

◆
 1 +

✓
n� 1

1

◆
�n�2 +

✓
n� 1

0

◆

, n�n�1 � (n� 1)�n�2  1,

which holds always. If ↵ ! 0, for any i 6= n, all the sentences of the left-hand side of the above

inequality equal to zero, and and for any i 6= n� 1, all the sentences of the right-hand side of the

above inequality equal to zero; that is, we will have

Qs

n+1  Qs

n ,
✓
n

n

◆
+

✓
n

n� 1

◆�
�n�1

�

✓
n� 1

n� 1

◆
+

✓
n� 1

n� 2

◆
�n�2

, �  n� 1

n
.

which holds almost always (when � is not too large). Moreover,

Ks

n+1  Ks

n , n

n+ 1

n�1X

i=0

↵n+1�i (1� ↵)i
✓
n� 1

i

◆✓
1 +

i�

n+ 1� i

◆

+
n

n+ 1

nX

i=1

↵n+1�i (1� ↵)i
✓
n� 1

i� 1

◆✓
1 +

1 + (i� 1)�

n+ 1� i

◆

+
1

n+ 1

nX

i=0

↵n+1�i (1� ↵)i
✓
n

i

◆✓
1 +

i

n+ 1� i

◆

 n� 1

n

n�2X

i=0

↵n�i (1� ↵)i
✓
n� 2

i

◆✓
1 +

i�

n� i

◆

+
n� 1

n

n�1X

i=1

↵n�i (1� ↵)i
✓
n� 2

i� 1

◆✓
1 +

1 + (i� 1)�

n� i

◆

+
1

n

n�1X

i=0

↵n�i (1� ↵)i
✓
n� 1

i

◆✓
1 +

i

n� i

◆
.
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If ↵ ! 1, all sentences including (1� ↵)i equal to zero if i 6= 0; that is, we will have

Ks

n+1  Ks

n , n

n+ 1

✓
n� 1

0

◆
+

1

n+ 1

✓
n

0

◆
 n� 1

n

✓
n� 2

0

◆
+

1

n

✓
n� 1

0

◆

, n

n+ 1
+

1

n+ 1
 n� 1

n
+

1

n
,

which holds always. If ↵ ! 0, after canceling out ↵ from both side of the inequality, all sentences

of its left-hand side, in which i 6= n, equal to zero, and all sentences of its right-hand side, in which

i 6= n� 1, equal to zero; that is, we will have

Ks

n+1  Ks

n , n

n+ 1

✓
n� 1

n� 1

◆
(1 + 1 + (n� 1)�) +

1

n+ 1

✓
n

n

◆
(1 + n)

 n� 1

n

✓
n� 2

n� 2

◆
(1 + 1 + (n� 2)�) +

1

n

✓
n� 1

n� 1

◆
(1 + n� 1)

, (n+ 2) (n� 1)�  �2,

which can never hold.

2. For ring networks, the chance of game continuation is always decreasing in n, but the expected

repayment can be increasing in n if ↵ is not too large.

Qr

n+1  Qr

n , ↵n+1 + (n+ 1)↵n (1� ↵)
�
�2�n�4

�

+
n�1X

h1=0

(n+ 1)↵n�1 (1� ↵)2 P (h1)P (n� 1� h1)

+
n�2X

h1=0

n�2�h1X

h2=0

(n+ 1)↵n�2 (1� ↵)3 P (h1)P (h2)P (n� 2� h1 � h2)

+...+ (n+ 1)↵ (1� ↵)n
�
�2�n�4

�

 ↵n + n↵n�1 (1� ↵)
�
�2�n�5

�

+
n�2X

h1=0

n↵n�2 (1� ↵)2 P (h1)P (n� 2� h1)

+
n�3X

h1=0

n�3�h1X

h2=0

n↵n�3 (1� ↵)3 P (h1)P (h2)P (n� 3� h1 � h2)

+ · · ·+ n↵ (1� ↵)n�1 ��2�n�5
�
.
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If ↵ ! 1, the above inequality boils down to

Qr

n+1  Qr

n , ↵n+1  ↵n,

which holds always; and if ↵ ! 0, the inequality turns to

Qr

n+1  Qr

n , (n+ 1)
�
�2�n�4

�
 n

�
�2�n�5

�

, �  n

n+ 1
,

which holds if � is not too large.

Kr

n+1  Kr

n ,
nX

i=0

min{2,i}X

j=max{i�2�(n�4),0}

min{2,(i�j)}X

k=max{i�j�(n�4),0}
✓

2

j

◆✓
2

k

◆✓
n� 4

i� j � k

◆
↵n+1�i (1� ↵)i

✓
1 +

j + k� + (i� j � k)�

n+ 1� i

◆�


n�1X

i=0

min{2,i}X

j=max{i�2�(n�5),0}

min{2,(i�j)}X

k=max{i�j�(n�5),0}
✓

2

j

◆✓
2

k

◆✓
n� 5

i� j � k

◆
↵n�i (1� ↵)i

✓
1 +

j + k� + (i� j � k)�

n� i

◆�
.

If ↵ ! 1, the sentences of the above inequality for any i 6= 0 are zero; that is,

Kr

n+1  Kr

n ,
0X

j=0

0X

k=0

✓
2

j

◆✓
2

k

◆✓
n� 4

�j � k

◆
↵n+1

✓
1 +

j + k� + (�j � k)�

n+ 1

◆�


0X

j=0

0X

k=0

✓
2

j

◆✓
2

k

◆✓
n� 5

�j � k

◆
↵n

✓
1 +

j + k� + (�j � k)�

n

◆�

, ↵n+1  ↵n,

which holds always. If ↵ ! 0, all the sentences of the right-hand side of the above inequality for any

i 6= n are zero, and all the sentences of the left-hand side of the above inequality for any i 6= n� 1
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are zero (note that one ↵ should be canceled out from both sides); that is,

Kr

n+1  Kr

n ,
2X

j=2

2X

k=2

✓
2

j

◆✓
2

k

◆✓
n� 4

n� j � k

◆
(1� ↵)n (1 + j + k� + (n� j � k)�)

�


2X

j=2

2X

k=2

✓
2

j

◆✓
2

k

◆✓
n� 5

n� 1� j � k

◆
(1� ↵)n�1 (1 + j + k� + (n� 1� j � k)�)

�

, �  0,

which cannot hold except for � = 0.

3. For a line, the chance of game continuation is always decreasing in n, but the expected

repayment can be increasing in n if ↵ is not too large.

Ql

n+1  Ql

n , ↵n+1 + 2↵n (1� ↵)��n�2 + 2↵n (1� ↵)��n�3 + (n� 3)↵n (1� ↵)�2�n�4

+...+

+2↵ (1� ↵)n ��n�2 + 2↵ (1� ↵)n ��n�3 + (n� 3)↵ (1� ↵)n �2�n�4

 ↵n + 2↵n�1 (1� ↵)��n�3 + 2↵n�1 (1� ↵)��n�4 + (n� 4)↵n�1 (1� ↵)�2�n�5

+...+

+2↵ (1� ↵)n�1 ��n�3 + 2↵ (1� ↵)n�1 ��n�4 + (n� 4)↵ (1� ↵)n�1 �2�n�5,

that can be rewritten as

Ql

n+1  Ql

n , 2↵n�1��n�2 + 2↵n�1��n�3 + (n� 3)↵n�1�2�n�4

+...+

+2 (1� ↵)n�1 ��n�2 + 2 (1� ↵)n�1 ��n�3 + (n� 3) (1� ↵)n�1 �2�n�4

 ↵n�1 + 2↵n�2��n�3 + 2↵n�2��n�4 + (n� 4)↵n�2�2�n�5

+...+

+2 (1� ↵)n�2 ��n�3 + 2 (1� ↵)n�2 ��n�4 + (n� 4) (1� ↵)n�2 �2�n�5.
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If ↵ ! 1, all the sentences that include (1� ↵) equal to zero; that is, we will have

Ql

n+1  Ql

n , 2��n�2 + 2��n�3 + (n� 3)�2�n�4

 1 + 2��n�3 + 2��n�4 + (n� 4)�2�n�5

, 2�
�
�n�2 � �n�4

�
+ �2

⇥
(n� 3)�n�4 � (n� 4)�n�5

⇤
 1,

which holds always. If ↵ ! 0, all the sentences that include ↵ equal to zero; that is, we will have

Ql

n+1  Ql

n , 2��n�2 + 2��n�3 + (n� 3)�2�n�4

 2��n�3 + 2��n�4 + (n� 4)�2�n�5

, 2�
�
�n�2 � �n�4

�
+ �2

⇥
(n� 3)�n�4 � (n� 4)�n�5

⇤
 0,

which can hold if � is small enough.

K l

n+1  K l

n , 2

n+ 1

nX

i=0

min{1,i}X

j=max{i�1�(n�2),0}

min{1,(i�j)}X

k=max{i�j�(n�2),0}
✓

1

j

◆✓
1

k

◆✓
n� 2

i� j � k

◆
↵n+1�i (1� ↵)i

✓
1 +

j + k� + (i� j � k)�

n+ 1� i

◆�

+
2

n+ 1

nX

i=0

min{2,i}X

j=max{i�1�(n�3),0}

min{1,(i�j)}X

k=max{i�j�(n�3),0}
✓

2

j

◆✓
1

k

◆✓
n� 3

i� j � k

◆
↵n+1�i (1� ↵)i

✓
1 +

j + k� + (i� j � k)�

n+ 1� i

◆�

+
n� 3

n+ 1

nX

i=0

min{2,i}X

j=max{i�2�(n�4),0}

min{2,(i�j)}X

k=max{i�j�(n�4),0}
✓

2

j

◆✓
2

k

◆✓
n� 4

i� j � k

◆
↵n+1�i (1� ↵)i

✓
1 +

j + k� + (i� j � k)�

n+ 1� i

◆�
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 2

n

n�1X

i=0

min{1,i}X

j=max{i�1�(n�3),0}

min{1,(i�j)}X

k=max{i�j�(n�3),0}
✓

1

j

◆✓
1

k

◆✓
n� 3

i� j � k

◆
↵n�i (1� ↵)i

✓
1 +

j + k� + (i� j � k)�

n� i

◆�

+
2

n

n�1X

i=0

min{2,i}X

j=max{i�1�(n�4),0}

min{1,(i�j)}X

k=max{i�j�(n�4),0}
✓

2

j

◆✓
1

k

◆✓
n� 4

i� j � k

◆
↵n�i (1� ↵)i

✓
1 +

j + k� + (i� j � k)�

n� i

◆�

+
n� 4

n

n�1X

i=0

min{2,i}X

j=max{i�2�(n�5),0}

min{2,(i�j)}X

k=max{i�j�(n�5),0}
✓

2

j

◆✓
2

k

◆✓
n� 5

i� j � k

◆
↵n�i (1� ↵)i

✓
1 +

j + k� + (i� j � k)�

n� i

◆�
.

If ↵ ! 1, all the sentences for which i 6= 0 equal to zero; that is, we will have

K l

n+1  K l

n , 2

n+ 1
+

2

n+ 1
+

n� 3

n+ 1
 2

n
+

2

n
+

n� 4

n
,

which holds always. If ↵ ! 0, all the sentences of the left-hand side of the above inequality for any

i 6= n are zero, and all the sentences of the right-hand side of the above inequality for any i 6= n� 1

are zero (note that one ↵ should be canceled out from both sides); that is,

K l

n+1  K l

n , 2

n+ 1
(5 + 2� + (2n� 5)�) +

n� 3

n+ 1
(3 + 2� + (n� 4)�)

 2

n
(5 + 2� + (2n� 7)�) +

n� 4

n
(3 + 2� + (n� 5)�)

, 4� +
�
n+ n2 � 6

�
�  �2,

which never holds. 2

54



Proof of Lemma 4. We know

L  L =

8
>>><

>>>:

KY
H

n(1+✏) if � � n

nQ+n↵�km

↵�KY
H

(n�n�Q+�km)(1+✏) if �  n

nQ+n↵�km

,

R =
L (1 + ✏)

K
,

V R =
n↵Y H � nL (1 + ✏)

1� �Q
.

First of all, the borrower welfare V R is increasing in L because we assumed that a larger loan

increases the project outcome more than the repayment; that is, n↵
⇣
@Y

H

@L

⌘
> n (1 + ✏). Moreover,

the loan ceiling L and the borrower welfare V R are both increasing in Q and K.

Below, we show that the loan ceiling L and the borrower welfare V R can be also increasing in

n for some �.

@L
@n

=

8
>>><

>>>:

@L̃

@n
=
⇣

Y
H

1+✏

⌘
@K

@n
n�K

n2 if � � n

nQ+n↵�km

@L̂

@n
=
⇣
↵�Y

H

1+✏

⌘ @K

@n
(n�n�Q+�km)�K(1��Q�n�

@Q

@n
+�

@km

@n
)

(n�n�Q+�km)2 if �  n

nQ+n↵�km

,

@V R

@n
=

n
h
↵@Y

H

@L
� (1 + ✏)

i �
@L

@n

�
(1� �Q) +

⇥
↵Y H � L (1 + ✏)

⇤ ⇣
1� �Q+ n� @Q

@n

⌘

(1� �Q)2
.

Assuming that @K

@n
< K

n
, L̃ is always decreasing in n, but L̂ can be increasing in n if and only if

@K

@n
(n� n�Q+ �km) > K

✓
1� �Q� n�

@Q

@n
+ �

@km
@n

◆

which can be rewritten as


n

✓
K

n
� @K

@n

◆
Q+

✓
n
@Q

@n
� @km

@n

◆
K +

@K

@n
km

�
� > n

✓
K

n
� @K

@n

◆
.

Thus, if n
�
K

n
� @K

@n

�
Q+

⇣
n@Q

@n
� @km

@n

⌘
K + @K

@n
km > 0, then L̂ will be increasing in n for any

� >
n
�
K

n
� @K

@n

�

n
�
K

n
� @K

@n

�
Q+

⇣
n@Q

@n
� @km

@n

⌘
K + @K

@n
km

;
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and if n
�
K

n
� @K

@n

�
Q+

⇣
n@Q

@n
� @km

@n

⌘
K + @K

@n
km < 0, L̂ will be decreasing in n for any �.

Therefore, L can be increasing in n only if n
�
K

n
� @K

@n

�
Q+

⇣
n@Q

@n
� @km

@n

⌘
K + @K

@n
km > 0 and

� 2

0

@ n
�
K

n
� @K

@n

�

n
�
K

n
� @K

@n

�
Q+

⇣
n@Q

@n
� @km

@n

⌘
K + @K

@n
km

,
n

nQ+ n↵� km

1

A .

Moreover, @V
R

@n
can be positive only if

n


↵
@Y H

@L
� (1 + ✏)

�✓
@L

@n

◆
(1� �Q) +

✓
1� �Q+ n�

@Q

@n

◆⇥
↵Y H � L (1 + ✏)

⇤
> 0,

which simplifies to

@L

@n
> �

 
1� �Q+ n� @Q

@n

n� n�Q

! 
↵Y H � L (1 + ✏)

↵@Y H

@L
� (1 + ✏)

!
. 2

Proof of Proposition 5. According to Lemma 1, if
�
K � n@K

@n

�
Q+

⇣
n@Q

@n
� @km

@n

⌘
K+

�
@K

@n

�
km >

0 L can increase in n for given ↵ and �, there are some n such that

� 2

0

@ K � n@K

@n�
K � n@K

@n

�
Q+

⇣
n@Q

@n
� @km

@n

⌘
K +

�
@K

@n

�
km

,
n

nQ+ n↵� km

1

A .

The borrower welfare V R can increase in n only if L increases in n. Assume

8
>><

>>:

�̂ (n,↵) =
K�n

@K

@n

(K�n
@K

@n
)Q+(n @Q

@n
� @km

@n
)K+( @K

@n
)km

�̃ (n,↵) = n

nQ+n↵�km

.

For a complete network of borrowers, Qc = Kc = kcm = [1� (1� ↵)n] and thus @Q
c

@n
= @K

c

@n
=

@k
c
m

@n
> 0. For such a complete network, we will have

�̂ (n,↵) =
[1� (1� ↵)n] + (1� ↵)n ln (1� ↵)n

[1� (1� ↵)n]2
,

�̃ (n,↵) =
1

↵+ n�1
n

[1� (1� ↵)n]
.
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It is not di�cult to verify that �̂ is strictly increasing in both n and ↵ and �̃ is strictly decreasing

in both n and ↵. Moreover, lim
↵!0

�̂ (n,↵) = �1 and lim
↵!0

�̃ (n,↵) = 1 while lim
↵!1

�̂SJL (n,↵) = 1 and

lim
↵!1

�̃SJL (n,↵) = n

2n�1 . Thus �̂ and �̃ must coincide only once at some critical ↵̄ 6= 0. Thus, for

any given n, if ↵ 2 (0, ↵̄), then �̂ < �̃, and for ↵ 2 (0, ↵̄), the loan ceiling will be increasing in n

and maximized at

N↵,� = max
n
n| �̂ (n,↵) < � < �̃ (n,↵)

o
.

Note that n cannot grow too large, as otherwise, lim
n!1

�̂ = 1 and lim
n!1

�̃ =
1

↵+ 1
< 1; that is, for a

very large n, the interval
⇣
�̂, �̃
⌘
is empty and the borrower welfare cannot be increased by enlarging

the group size. For given ↵ and �, we can calculate N↵,� by starting with n = 2 and increasing

n one by one until � equals one of the �̂ or �̃, and n cannot be increased further. If �̂ = �, then

N↵,� =
j
�̂�1 (�,↵)

k
and if �̃ = �, then N↵,� =

j
�̃�1 (�,↵)

k
. Thus, N↵,� can be rewritten as

N↵,� = min
nj

�̂�1 (�,↵)
k
,
j
�̃�1 (�,↵)

ko
. 2
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